

PII: S0040-4039(97)01317-8

Synthesis of 6-Deoxy-6,6-Difluoro-a-D-Glucopyranosyl Fluoride

Lincoln A. Noecker and John R. Edwards*

Department of Chemistry, Villanova University, Villanova. PA 19085 USA

Abstract: The synthesis of 6-deoxy-6,6-difluoro- α -D-glucopyranosyl fluoride from the benzyl-protected methylglucoside was accomplished in six steps. © 1997 Elsevier Science Ltd.

Glycosyl fluorides have been used as substrates to study the specificity and kinetics of numerous glucantransferases,¹ glycosidases,^{2,3} and phosphorylases.⁴ Several substituted glycosyl fluorides including 6-deoxy-6fluoro- α -D-glucopyranosyl fluoride were found to be enzyme inhibitors. Consequently, 6-deoxy-6,6-difluoro- α -D-glucopyranosyl fluoride was synthesized for its use with inhibition studies of sucrose phosphorylase from *Leuconostoc mesenteroides* using α -D-glucopyranosyl fluoride as substrate.

Several gem-difluorosaccharides have been prepared from the corresponding carbonyl compounds using diethylaminosulfur trifluoride (DAST). The 2-deoxy-2,2-and 4-deoxy-4,4-difluoropentopyranosides⁵ and 6-deoxy-6,6-difluorogalactose⁶ were prepared from their respective isopropylidene derivatives. The synthesis of a 6-deoxy-6,6-difluoroglucose derivative has been described³ using a similar approach that is reported here.

Attempts to use the acetate-protected glucoside gave unsatisfactory results. The Moffatt oxidation of the 1,2,3,4-tetraacetylglucose gave a good yield of the aldehyde. However, fluorination of the aldehyde with DAST gave a poor yield of the desired 1,2,3,4-tetra-O-acetyl-6-deoxy-6,6-difluoro- β -D-glucopyranose (9%) and an elimination product, 1,2,3-tri-O-acetyl-4,6-dideoxy-6,6-difluoro- α -L-threo-hex-4-enopyranose (2%). Each compound was identified by its nmr spectra.

The successful synthesis (Scheme 1) relied on the oxidation of the benzyl-protected sugar **1b**, which was obtained from the benzylation of methyl 6-*O*-triphenylmethyl- α -**D**-glucopyranoside, followed by acid-catalyzed removal of the trityl group. The oxidation employed 1,3-diisopropylcarbodiimide in methyl sulfoxide⁷ to yield methyl 2,3,4-tri-*O*-benzyl- α -**D**-gluco-hexodialdo-1,5-pyranose hydrate, **2**. Compound **2** (2.5 mmol) in CH₂Cl₂ was treated with DAST (6.8 mmol) at -40°C, and stirred overnight at 0°C. After the reaction mixture was quenched with MeOH, separation by silica gel chromatography (ethyl acetate-hexanes, 1:9, v/v) gave the difluoro compound **3**⁸ (in 23% yield from **1b**). After conversion to the peracetylated difluoro compound **4**, it was reacted with HF-pyridine (70:30, v/v)⁹ to give 2,3,4-tri-*O*-acetyl-6-deoxy-6,6-difluoro- α -**D**-glucopyranosyl fluoride, **5a**,¹⁰ in 31% yield. The acetate ester hydrolysis with catalytic sodium methoxide in methanol afforded pure fluoride **5b** which was used in enzymatic assays without additional purification.

Scheme 1. a.) Amberlyst[®] 15 (H⁺), hexanes, wet MeOH, 50°C, 3 days; b.) diisopropylcarbodiimide, Me₂SO, PhH, pyr, trifluoroacetic acid, 14 h, then oxalic acid in MeOH; c.) DAST, CH_2Cl_2 , -40-0°C; d.) HOAc/Ac₂O, 3:7, v/v, 0°C, H_2SO_4 ; e.) HF-pyridine 7:3 v/v, CH_2Cl_2 ; f.) NaOMe, MeOH.

References and Notes

- Côté, G.L.; Robyt, J.F. Carbohyd. Res. 1982, 101, 57-74; Michiels, A.G.; Wang, A.Y.; Clark, D.S.; Blanch, H.W. Appl. Biochem. Biotechnol. 1991, 31, 237-246.
- 2. Hehre, E.J.; Matsui, H.; Brewer, C.F. Carbohyd. Res. 1990, 198, 123-132.
- 3. Halazy, H.; Berges, V.; Ehrhard, A.; Danzin, C. J. Fluorine. Chem. 1992, 185-192.
- Gold, A.M.; Osber, M.P. Biochem. Biophys. Res. Commun. 1971, 42, 469-474; Mazza, J.C.; Akgerman, A.; Edwards, J.R. Carbohyd. Res. 1975, 40, 402-406.
- 5. Sharma, R.A.; Kavai, I.; Fu, Y.L.; Bobek, M. Tetrahedron Lett. 1977, 39, 3433-3436.
- 6. May, J.A.; Sartorelli, A.C. J. Med. Chem. 1979, 22, 971-976.
- 7. Singh, S.; Nambiar, S.; Porter, R.A.; Sander, T.L.; Taylor, K.G. J. Org. Chem. 1989, 54, 2300-2307.
- 3: [α]_D+9.5 (c 0.1, CHCl₃); ¹H NMR (CDCl₃): δ 7.35-7.25 (m, 15H, aromatic), 5.76 (td, 1H, J_{6F} 54.0, J_{5.6} 1.1 Hz, H-6), 5.00, 4.89, 4.81, 4.80, 4.64, 4.59 (6d, 6H, J_{HH} 10.8 10.9, 12.1 Hz, 3 OCH^AH^aPh), 4.63 (d, 1H, J_{1.2} 3.6 Hz, H-1), 4.01 (dd, 1H, J_{2.3}9.7, J_{3.4} 8.7 Hz, H-3), 3.84 (ddd, 1H, J_{5.F} 18.4, J_{5.F} 8.7, J_{4.5} 8.4, J_{5.6} 1.1 Hz, H-5), 3.58 (t, 1H, J_{3.4} 8.7, J_{4.5} 8.4 Hz, H-4), 3.53 (dd, 1H, J_{2.3} 9.7, J_{1.2} 3.6 Hz, H-2), 3.39 (s, 3H, OCH₃); ¹⁰F NMR (CDCl₃): δ -132.6 (dd, J_{FF} 283.7, J_{F6} 53.7, J_{F5} 8.7 Hz), -135.2 (ddd, J_{FF} 283.7, J_{F.6} 54.4, J_{F5} 18.4 Hz); ¹³C NMR (CDCl₃): δ 138.3-127.5 (aromatic), 113.6 (t, J_{6.F} 243.8 Hz, C-6), 97.9 (C-1), 81.5 (C-3), 79.4 (C-2), 76.6 (d, J_{4.F} 4.8 Hz, C-4), 75.6, 74.9, 73.3 (3OCH₂Ph), 68.6 (t, J_{5.F} 19.9 Hz, C-5), 55.2 (OCH₃). Anal. Calculated for C₂₈H₃₀F₂O₅: C, 69.41; H, 6.24; F, 7.84; Found C, 69.28, H, 6.21, F, 7.98.
- 9. Hayashi, M.; Hashimoto, S.; Noyori, R. Chem. Lett. 1984, 1747-1750.
- 10. **5a**: m.p. 118.5-120 °C (from ether-hexanes); ¹H NMR (CDCl₃): δ 5.84 (td, 1H, $J_{6,F}$ 54.1, $J_{5,6}$ 2.7 Hz, H- 6), 5.80 (dd, 1H, $J_{1,F}$ 52.4, $J_{1,2}$ 2.8 Hz, H-1), 5.54 (t, 1H, $J_{2,3}$ 10.1, $J_{3,4}$ 9.7 Hz, H-3), 5.32 (t, 1H, $J_{4,5}$ 9.8, $J_{3,4}$ 9.7 Hz, H-4), 4.94 (ddd, 1H, $J_{2,F}$ 24.1, $J_{2,3}$ 10.1, $J_{1,2}$ 2.8 Hz, H-2), 4.21 (ddd, 1H, $J_{5,F}$ 11.0, $J_{5,F}$ 10.1, $J_{4,5}$ 9.8, $J_{5,6}$ 2.7 Hz, H-5), 2.11, 2.06 (2.05 (38, 9H, 3 CH₃C=0); ¹⁹F NMR(CDCl₃): δ -128.3 (ddd, $J_{F6,F6}$ 295.0, $J_{F6,H6}$ 53.6, $J_{F6,H5}$ 10.1 Hz, F-6b), -132.0 (ddd, $J_{F6,F6}$ 295.0, $J_{F6,H5}$ 11.1Hz, F-6a), -150.8 (dd, $J_{F_{6,F6}}$ 295.1, $J_{6,H5}$ 11.1Hz, F-6b), -132.0 (ddd, $J_{F6,F6}$ 295.0, $J_{7,H1}$ 22.4, $J_{2,2}$ 1.1, $J_{2,2}$ 6.1, $J_{2,1}$ 2.8 Hz, $H_{2,1}$ 2.4, $J_{2,2}$ 2.4

(Received in USA 29 May 1997; revised 23 June 1997; accepted 24 June 1997)